
1

Code Convention Adherence in Evolving Software
Michael Smit, Barry Gergel, H. James Hoover, and Eleni Stroulia

Department of Computing Science
University of Alberta
Edmonton, Canada

Email: {msmit,gergel,hoover,stroulia}@cs.ualberta.ca

Abstract—Maintainability is a desired property of software,
and a variety of metrics have been proposed for measuring it,
focusing on different notions of complexity and code readability.
Many practices have been proposed to improve maintainability
through code refactorings: improving the cohesion, simplification
of interfaces, renamings to improve understandability. Code
conventions are a body of advice on lexical and syntactic aspects
of code, aiming to standardize low-level code design under
the assumption that such a systematic approach will make
code easier to read, understand, and maintain. We present the
first stage in our examination of code-convention adherence
practices as a proxy measurement for maintainability. Based on
a preliminary survey of software engineers, we identify a set of
coding conventions that most relate to maintainability. Then we
devise a “convention adherence” metric, based on the number
and severity of violations of a defined coding convention. Finally,
we analyze several open-source projects according to this metric
to better understand how consistent different teams are with
respect to adopting and conforming to code conventions.

I. INTRODUCTION AND BACKGROUND

A modern organization depends on software to provide a
competitive advantage. Its developers must be agile, able to
quickly respond to opportunities and threats. Yet software
assets must be long-lasting, partly so that the organization can
recoup its investment, and more importantly so that developers
can focus on new opportunities, rather than being employed in
re-implementing the past. But new opportunities do not stand
alone, they must integrate into an organization’s existing body
of software. Thus, software maintenance is about responding
to change using both current and new software assets.

Software maintenance requires two key things: comprehen-
sion and design. To change software you have to understand
it. Even when you understand it the design has to support
the changes you desire. Therefore maintainability needs to be
measured in context, relative to the kinds of changes you wish
to make.

Multiple metrics have been proposed for measuring main-
tainability, most of which focus on evaluating complexity. The
Halstead complexity metric [1] and McCabe’s cyclomatic met-
ric [2] are two prominent complexity metrics. These metrics
are combined with the number of lines of code to compute the
maintainability index [3]. But complexity is only one factor
affecting maintainability, and the relationship may not be as
linear as is assumed by complexity-driven metrics.

Practitioners intuitively agree that even complex software
can become more maintainable when it is understandable,
whether through good documentation or through improved

code readability [4]. If this is the case, then good documenta-
tion and good code somehow contribute to comprehension of
enough design to make (or abandon) the desired code changes.
There is no precise metric for good, but in the case of code we
have a potential proxy definition. Code is good if it conforms
to the code conventions for an organization or project.

Advocates of code conventions suggest that they produce
software that is less error-prone and easier to maintain. Fur-
thermore, code conventions appear to support maintainability
over a wide range of contexts, and thus benefit the entire
organization. Software projects generally publish a set of
conventions they adhere to in order to keep the code consistent.
The intuition behind these conventions is plausible: hard-
coded strings and numeric constants make code more difficult
to update; well-formatted comments help new developers
understand the code or use an API; a well-defined naming
style that matches existing libraries helps associate syntax with
semantic meaning. An unstated outcome is that good code
makes it easier to understand the design.

This leads us to the central question of our research: To what
extent do code conventions increase or reduce maintainability?
The questions we answer in this paper are preliminary: How
well do projects follow their code conventions over time?
How well do they follow code conventions that are considered
important for maintenance?

The remainder of the paper is as follows. In Section II,
we take a closer look at code conventions and best practices.
We describe the methodology we used to study the four open
source applications in Section III and present our results in
Section IV. Finally in Section V, we suggest possible future
research directions and review our results.

II. CODE CONVENTIONS

Code is king — it is the ultimate expression of the design of
the software. Implementation decisions made by developers,
such as the use of magic numbers and hard coded strings, neg-
atively impact the readability, the understandability and, ulti-
mately, the maintainability of a software system by introducing
brittleness that reduces modifiability. We use code conventions
as a broad umbrella term that includes best practices around
naming, syntactic and commenting style. Code conventions are
repositories of rules and guidelines encompassing all concerns
with regard to improving code quality.

Code conventions have co-evolved with programming lan-
guages. Some conventions are generally applicable while

2

others are specific to one language (e.g. Java) or to a paradigm
(e.g. object-oriented programming). Li and Prasad reported
that although developers understood the importance of using
code conventions, they did not follow them when development
needed to be completed quickly [5]. Tools have been devel-
oped to enforce these conventions (for example, FindBugs,
Checkstyle, and Jtest1). Given the broad range of concerns
captured by these best practices, it is intuitive that not all
of these conventions are equally relevant to code readability,
understandability, and maintainability.

To identify the code conventions most important to main-
tainable code, we solicited input from a “panel” of seven
software engineers. Each had a Masters degree or higher,
with many years programming experience and theoretical
knowledge of coding conventions and best practices. All panel
members have current or former associations with our research
lab but are not involved directly in this project. A total of 71
different coding conventions were presented to the panel [?].
The conventions and their descriptions were modified from
the Checkstyle documentation (and so are automatically de-
tectable), with the checks that were not specific or difficult
to enforce excluded. For each question, the rationale behind
the convention was given, and the source identified where
possible. The respondents were asked to answer on a 7-
point Likert importance scale2 how important they believed
the convention was to “ensure the ability to change, adapt,
or update source code to meet changing requirements or fix
bugs”.

We identified 32 code conventions as “Important” based on
this input, i.e. conventions that were ranked as Very Important
and Important. It should be noted that this set of results
was not a consensus. For all but one convention, at least
one respondent answered Important or Very Important; for all
but the top 20, at least one respondent entered Neutral down
to Very Unimportant. We recognize that our identification of
“Important” conventions, as agreed upon by our “expert panel”
will not be universally accepted. From conversations with the
respondents, it is clear they believe that every good convention
has exceptions, and adherence to conventions in general is
secondary to compliance with functional specifications.

III. METHODOLOGY

We examined four open-source projects (Table I) for their
adherence with the Important code conventions from Sec-
tion II, using a set of tools developed for this purpose. We
assume that these projects have good maintainability, which is
something to be verified. We examined each project’s source
code repository over a period of time. The projects were
chosen to represent a wide range of activities within the open
source community. They vary in size, overall architectural
complexity, and the number of participating developers. Some
projects use tools to enforce code conventions, while others do
not. The selection of applications also represents software from

1http://findbugs.sourceforge.net/, http://checkstyle.sourceforge.net/, http://
www.parasoft.com/jsp/products/jtest.jsp?itemId=14

27 is Very Important, 6 Important, 5 Somewhat Important, 4 Neutral, 3
Somewhat Unimportant, 2 Unimportant, 1 Very Unimportant.

a range of domains. Furthermore, each project is primarily
Java and uses an Subversion (svn) repository. With the data
from each project, we examined only the trunk of the svn
repository, which is typically the base of development for the
project. Branches were ignored until their code was merged
into the trunk. Our study consisted of the following steps.

Identification of relevant revisions. Every commit to an
svn repository increments the revision number. Some commits
do not modify the trunk source tree and can be safely ignored.
Meta data (relevant revision numbers, dates, committers, svn
log messages) is collected.

Identification of change sets. We then iteratively check
out each of the relevant revisions and obtain a list of added,
deleted, and updated (including merged) files. These change
sets are subsequently filtered (all non-Java files and files only
for testing are excluded3).

Analysis of the change set. We count the total source
lines of code (SLOC) in each file in the filtered change set
(using CLOC4). The complete output for every change set is
stored in XML format. We then use the Checkstyle tool to test
adherence to code conventions; every violation of all the sets,
for every revision of every file, is stored in XML. The code
conventions used included project-specific standards and the
Important standards identified previously.

Analysis of code-convention violations. We explore the
cached convention violation data and SLOC metrics.

IV. EARLY RESULTS

This analysis produced significant amounts of data about
adherence to code conventions; we present some of these re-
sults here, as a first step toward understanding the relationship
to maintainability.

Fig. 1 shows how violations per line of code changed over
time, measured by days since the first commit we examined.
This generally indicates the date on which the source code
was made public (e.g., committed to a public repository
like Apache or Sourceforge). Hadoop and JFreeChart, both
Checkstyle users, eventual shows consistently low violation
count. Ant, also a Checkstyle user, shows low violations
eventually — it should be noted that the Checkstyle tool is
in use today, but did not exist when Apache Ant first started.
Sharp drops indicate intentional effort to increase adherence.
Derby and Hadoop do not exhibit this intentional effort; the
growth of the code base has a strong positive correlation
with the increase in violations. We calculated the Pearson
correlation coefficients (ρ) for the SLOC and violation counts;
+1 is a perfect increasing linear relationship between the two;
−1 is a perfect decreasing linear relationship. While Derby
and Hadoop have ρ = 0.955 and ρ = 0.979 respectively,
Ant is negatively correlated (ρ = −0.455) and JFreeChart is
positively correlated (ρ = 0.233).

Next we examined how the correlation between lines of
code and violations changes over the life of a project, using

3Arguably code conventions that are relevant to the core source are just as
important to the test cases; however, our results showed substantially more
code-convention violations in the testing classes in most projects.

4http://cloc.sourceforge.net/

3

Name Start SLOC End SLOC Committers Start Date End Date ∆ Time ∆ SLOC SLOC/Day
Ant 3849 106547 47 13/01/2000 11/03/2011 4075 102698 25.20
Derby 235485 353398 36 11/08/2004 28/03/2011 2420 117913 48.72
Hadoop 37636 68531 29 18/05/2009 24/03/2011 675 30895 45.77
JFreeChart 82434 100354 2 19/06/2007 30/03/2010 1015 17920 17.66

TABLE I: Metadata for the open source projects included in this paper.

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 500 1000 1500 2000

St
yl

e
Vi

ol
at

io
ns

 P
er

 L
in

e
of

 C
od

e

Days since First Commit

Ant
JFreeChart

Hadoop Common
Derby

Fig. 1: Code convention violations per line of code, for
conventions identified as Important.

a sliding window of 100 commits (sliding-ρ). We suggest
that a strongly positive correlation in a 100-commit window
indicates consistent use of conventions: that is, that as lines
of code are added, roughly the same proportion of convention
violations are added, consistently over time. This does not say
anything about the slope of the linear relationship — that is,
how many violations are introduced per line of code — only
that the two grow together. A weak correlation, either positive
or negative, indicates a mix of commits; some increasing (or
decreasing) code convention adherence with no overall tread.
A strongly negative correlation indicates effort (over all 100
commits) to increase adherence to conventions.

The sliding-ρ graph for JFreeChart and Hadoop is not shown
here — they were both fairly flat at or near +1. Hadoop shows
one valley into a small negative correlation. In the case of
JFreeChart, this may be explained by the small size of the
development team. Sliding-ρ for Ant and Derby is shown
in Fig. 2. Ant shows occasional 100-commit windows with
strong negative correlation. Though new commits increase the
number of violations at a higher rate than the other projects,
this intentional effort to “clean up” the code decreases the
per-line ratio at the current state of the project. Derby shows
varying levels of adherence to standards in the commits; only
the last valley is deep enough to indicate cleaning effort.

Finally, we examined the types of violations reported (the
data presented here is from only the latest revision of each
project). The two most common violations were commenting
and final local variable violations: together they accounted
for around two-thirds of the violations reported in all of the
projects. For the former convention, we counted only missing
or incomplete Javadoc-style comments on public types and
methods only. JFreeChart is well-documented; the others less
so. The latter convention suggests if a local variable is declared
and assigned but not modified, it should be declared final5.

5For our test, we excluded method parameters (see Parameter Assignment).

-1

0

1

01
/0

1/
00

01
/0

1/
01

01
/0

1/
02

01
/0

1/
03

01
/0

1/
04

01
/0

1/
05

01
/0

1/
06

01
/0

1/
07

01
/0

1/
08

01
/0

1/
09

01
/0

1/
10

01
/0

1/
11

01
/0

1/
12

Pe
ar

so
n

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Time

(a) Apache Ant

-1

0

1

01
/0

1/
04

01
/0

1/
05

01
/0

1/
06

01
/0

1/
07

01
/0

1/
08

01
/0

1/
09

01
/0

1/
10

01
/0

1/
11

01
/0

1/
12

Pe
ar

so
n

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Time

(b) Apache Derby

Fig. 2: Pearson correlation coefficient for sliding 100-commit
windows.

The results (Fig. 3) for Ant and Derby show first a pie
chart comparing the number of the top two violations to all
of the other violations, then show the details of all the other
violations in a histogram. Missing braces, the use of magic
numbers, and repeatedly hard-coding the same string literal
are surprisingly common. The latter category is especially
troubling for maintenance, as when one of these String literals
changes it has to be changed in (at least) two places. Two
violations surprisingly high in count were violations of naming
conventions and missing or incorrect visibility modifiers. We
previously considered these to be generally accepted conven-
tions – not necessarily the most important to maintenance, but
widely accepted in general.

V. CONCLUSION AND FUTURE WORK

Existing metrics for measuring maintainability focus pri-
marily on the complexity of the source code. We examined
adherence to programming best practices and code conventions
as a potential proxy measure for maintainability. We collected
data on four open-source Java projects by mining their source
code repositories and running an automated code convention
adherence checker.

4

!" #!!" $!!" %!!" &!!" '!!!" '#!!" '$!!" '%!!" '&!!"

()*+,"-./012"

(.34531"672+8*"9+712)3:"

;+:+0+3+7<"(=>+?12"

-)/+8*""

@<,3=/)4,"@=/531A+7<"

B331*)3"@)7,C"

-11>"D2),1:"

E)2)/1712"F::+*8/187"

FG=+>"67)2"B/5=27"

HC+71:5),1""

(.34531";)2+)031"I1,3)2)4=8:"

B8812"F::+*8/187"

@3)::"J)8"K.7"@=/531A+7<"

(=>+?1>"@=872=3";)2+)031"

L+>1"M43+7<"@3)::"@=8:72.,7=2"

FG=+>"-1:71>"D3=,N:"

E)2)/1712"-./012"

K81"67)71/187"E12"9+81"

M8,=//1871>"()+8"

(17C=>"@=.87"

B331*)3"OC2=P:"

Q1>.8>)87"B/5=27"

(.7)031"RA,154=8"

6+/53+S<"D==31)8"Q17.28"

RT.)3:"L):C"@=>1"

6+/53+S<"D==31)8"RA521::+=8"

 !"#$%#&"#'
()"*+%,-.'

/01'

234#5+'6"75+'
85)45*+%'
()"*+%,-.'

9:1'

 !",,%#;'
()"*+%,-.'

::1'

(a) Apache Ant

!" #!!!" $!!!" %!!!" &!!!" '!!!" (!!!")!!!" *!!!" +!!!"

,--."/012-3"

41562",789-0"

,186:5""

;63696<6=>"4?.6@-0"

AB6=-3C12-""

47<DC<-"E=06:5"F6=-01<3"

G>2<?81D2"G?8C<-H6=>"

I1018-=-0"J3365:8-:="

K-.7:.1:="L8C?0="

L<<-51<"G1=2B"

I1018-=-0",789-0"

L::-0"J3365:8-:="

JM?6.",-3=-."/<?2N3"

JM?6."E=10"L8C?0="

G<133"O1:"P7="G?8C<-H6=>"

E68C<6Q>"/??<-1:"RHC0-336?:"

47<DC<-";10619<-"S-2<101D?:3"

T6.-"UD<6=>"G<133"G?:3=072=?0"

4-=B?."G?7:="

47=19<-"RH2-CD?:"

E68C<6Q>"/??<-1:"K-=70:"

4?.6@-."G?:=0?<";10619<-"

P:-"E=1=-8-:="I-0"F6:-"

U:2?88-:=-."416:"

L<<-51<"VB0?W3"

RX71<3"T13B"G?.-"

S-Q17<="G?8-3"F13="

E=06:5"F6=-01<"RX71<6=>"

G?M1061:="RX71<3"

 !"#$%#&"#'
()"*+%,-.'

/01'

234#5+'6"75+'
85)45*+%'
()"*+%,-.'

9:1'

 !",,%#;'
()"*+%,-.'

<<1'

(b) Apache Derby

Fig. 3: The type of code convention violations; the pie chart
compares final local variable, comment, and other code con-
vention problems; the histogram is details of the other code
conventions.

When examining the types of violations, we found problems
with basic Javadoc-style comments – typically one of the
top two violations, and also the most important convention
identified by our panel. Also prevalent were instances of
numeric and string literals hard-coded into source code, and
missing braces.

With the preliminary questions answered, we turn our at-
tention to the relationship between code convention adherence
and maintainability. Planned future work includes examining
how individual contributors impact adherence, how maintain-
able these projects actually are, how individual conventions or
categories of conventions change over the life of the project,
how individual files change as they mature, anything related

to the minor violations, weighting the types of violations
based on the scores assigned by the panel, and assessments
of maintainability. We have collected adherence data for more
software projects and are continuing to grow the dataset.

We are also interested in understanding the interplay of
these violations with the notion of “technical debt”. Technical
debt is a metaphor used to describe the practice of sacrificing
long-term goals in exchange for the [cheap,fast] achievement
of short-term goals (e.g., [6]). We believe that one indicator
of growing technical debt is the growing deviation from code
conventions and best practices; for example, when a deadline
looms, it may be faster to use a literal string than it is to
define and document a new constant variable. We have not yet
quantified or proven this relationship. There is limited support
for this hypothesis in [5], where Li reported that though
developers recognized the importance of code conventions
to code quality, they did not follow them in practice when
meeting deadlines.

We are currently formulating a user study that asks users
to rate code readability or perform a maintenance task on
code with varying levels of convention adherence. This will
quantify the relationship between code convention adherence
and maintainability. We are particularly interested in projects
with more constrained release schedules, projects with greater
separation between architects and developers, and projects that
have been deemed ‘unmaintainable’.

Finally, combining this static analysis with other forms
of analysis could be revealing. For instance, a combination
with dynamic analysis of code hot spots (or analyzing high-
maintenance files from repositories) could be used to place
greater importance on code convention violations in high-
maintenance or heavily-used code. Combining with analysis
of bug tracking data could quantify the relationship between
bugs and code conventions – a relationship we expect exists
but which has little empirical evidence.

ACKNOWLEDGEMENTS

Our thanks to the software engineering research lab at the
University of Alberta for their input to this process. Special
thanks to Nikolaos Tsantalis, Marios Fokaefs, Dave Chodos,
Ken Bauer, Camilo Arango, Ricardo Sanchez, and Ken Wong.

REFERENCES

[1] M. H. Halstead, Elements of Software Science (Operating and program-
ming systems series). New York, USA: Elsevier Science Inc., 1977.

[2] T. J. McCade, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[3] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to evaluate
software system maintainability,” Computer, vol. 27, pp. 44–49, 1994.

[4] D. Posnett, A. Hindle, and P. D. Vanbu, “A simpler model of software
readability,” in Working Conference on Mining Software Repositories
(MSR-11). Waikiki, USA: To Appear, May 2011.

[5] X. Li and C. Prasad, “Effectively teaching coding standards in program-
ming,” in Proceedings of the 6th conference on Information technology
education, ser. SIGITE ’05. New York, NY, USA: ACM, 2005, pp.
239–244.

[6] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sul-
livan, and N. Zazworka, “Managing technical debt in software-reliant
systems,” in Proceedings of the FSE/SDP workshop on Future of software
engineering research. NY, USA: ACM, 2010, pp. 47–52.

